Mechanical behavior of Ti–6Al–4V lattice-walled tubes under uniaxial compression
نویسندگان
چکیده
منابع مشابه
Tunable Mechanical Behavior of Carbon Nanoscroll Crystals Under Uniaxial Lateral Compression
A theoretical model is developed to investigate the mechanical behavior of closely packed carbon nanoscrolls (CNSs), the so-called CNS crystals, subjected to uniaxial lateral compression/decompression. Molecular dynamics simulations are performed to verify the model predictions. It is shown that the compression behavior of a CNS crystal can exhibit strong hysteresis that may be tuned by an appl...
متن کاملDeformation Behavior of Human Dentin under Uniaxial Compression
Deformation behavior of a human dentin under compression including size and rate effects is studied. No difference between mechanical properties of crown and root dentin is found. It is mechanically isotropic high elastic and strong hard tissue, which demonstrates considerable plasticity and ability to suppress a crack growth. Mechanical properties of dentin depend on a shape of samples and a d...
متن کاملHigh strain-rate behavior of ice under uniaxial compression
In the present study, a modified split Hopkinson pressure bar (SHPB) is employed to investigate the dynamic response of ice under uniaxial compression in the range of strain rates from 60 to 1400 s 1 and at initial test temperatures of 10 and 30 C. The compressive strength of ice shows positive strain-rate sensitivity over the range of strain rates employed; a slight influence of ice microstruc...
متن کاملQuasi-static Axial Compression of thin-walled Circular Composite Tubes
Assessing the behavior of composite structures which are subjected to impact loads is one of the important subjects in the field of mechanical sciences. Using thin-walled tubes which collapsed and absorbed the impact energy is a well-known method to prevent damages to the other parts of the structures. In this paper, deformations, crushing length, peak load, mean force and energy absorption cap...
متن کاملBuckling of Ge nanowires under uniaxial compression
Molecular dynamics simulations are performed to investigate the buckling properties of [100]-, [110]-, [111]-, and [112]-oriented single-crystalline germanium nanowires under uniaxial compression. The effects of simulation temperature, strain rate, and wire length on the buckling behaviour are investigated. The simulation results indicate that critical load clearly decreases with increasing tem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Defence Technology
سال: 2021
ISSN: 2214-9147
DOI: 10.1016/j.dt.2021.05.012